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Abstract
This paper describes a database management
system (DBMS) modified to use hardware
write protection to guard critical DBMS data
structures against software errors. Guarding
(write-protecting) DBMS data improves
software reliability by providing quick detec-
tion of corrupted pointers and array bounds
overruns. Guarding will be especially helpful
in an extensible DBMS since it limits the
power of extension code to corrupt unrelated
parts of the system. Read-write data structures
can be guarded as long as correct software is
able to temporarily unprotect the data struc-
tures during updates. The paper discusses the
effects of three different update models on per-
formance, software complexity, and error pro-
tection. Measurements of a DBMS which uses
guarding to protect its buffer pool show two to
eleven percent performance degradation in a
debit/credit benchmark.

1. Introduction

Today, software errors are the largest cause of
failure in fault tolerant transaction processing systems
[Gray90]. Between 1985 and 1990, software was at
fault in 62% of Tandem system outages. The second
and third largest contributors, operations and hardware,
were at fault 15% and 7% of the time, respectively. In
order to improve the reliability of these systems, we
must improve the reliability of the software they run.

One factor that limits the reliability of software is
software error propagation. Using redundancy,
hardware components can detect their own errors and
recover without disturbing the system. Software errors,
on the other hand, often cause damage that is not
detected immediately. The damaged system can initiate
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a sequence of additional software errors as it executes,
eventually causing the system to corrupt permanent data
or fail. Error propagation complicates software failure
modes, making the code difficult to reason about, test,
and debug. Reproducing propagation-related failures
during debugging is difficult since error propagation is
often timing dependent.

For some systems, software error propagation
reduces DBMS availability as well as reliability. In
multi-process DBMS architectures, a software error in
one process might propagate damage to shared data
structures. An uninitialized pointer used in one process,
for example, could propagate damage to DBMS shared
data before the error is detected. Even if no propagation
has occurred, all DBMS processes may have to go
through recovery simply because the extent of pro-
pagated damage is not known.

Unfortunately, the advent of extensible data
managers will make the error propagation worse in the
future than it is now. Extensible DBMS include
extended relational systems [Stonebraker87], object-
oriented systems [Bannerjee87], and DBMS toolkits
[Carey86]. An extensible DBMS lets users or database
administrators add access methods, operators, and data
types to manage complex objects. Moving functionality
from DBMS clients to the DBMS itself improves appli-
cation performance but could worsen system failure
behavior. Extensibility allows different object manage-
ment packages with varying degrees of trustworthiness
to run together in the data manager. Every time one user
on the system tries to use a new object manager or com-
bine existing ones in a new way, there is a risk of
uncovering new errors. Because of error propagation,
this risk is not confined to the person using the new
feature, but affects the reliability and availability
achieved by everyone.

The most common approach to software fault
tolerance is to write additional code that checks for
errors. By detecting errors quickly, systems limit the
chance that minor errors will propagate into worse ones.
However, checking for errors increases processing
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costs. No published figures are available regarding the
cost of error checking in the DBMS, however, run time
checks for array bounds overruns in Fortran programs
can double program execution time [Gupta90]. Further-
more, the checkers themselves can have defects. They
have to be maintained as the software they check is
maintained. Implementing and testing them increases
development cost.

To address software error propagation, we have
modified a DBMS to use hardware write protection to
protect some of its data structures from propagated
errors. Several system calls were added to the Sprite
operating system [Ousterhout88] to allow the DBMS to
guard (write protect) regions of its address space. The
DBMS uses these services to protect data in its buffer
pool. To provide read-write data with protection
against errors, the DBMS must support an update model
that allows correct software to modify protected data,
but prevents accidental updates by incorrect software.
Different update models will make different tradeoffs
regarding software complexity, performance, and the
kind of error protection offered.

We have experimented with three models for
updating guarded data structures: expose page, deferred
write, and expose segment. A single DBMS can use dif-
ferent update models in different program modules, if
necessary. The expose page model is the simplest one.
The DBMS must recognize that it is about to update a
protected record, unprotect the page containing the
record, and reprotect the record after it is updated. In
the deferred write model, the DBMS copies a record it
intends to update into unprotected memory and updates
the copy. At the end of transaction, a system call
recopies the updated record into protected memory.
Finally, the expose segment model lets the DBMS make
a system call to unprotect all guarded data at once.
After the update, a second system call reprotects the
guarded data.

In all three models, guarding DBMS data allows
the hardware to detect illegal attempts to write to pro-
tected pages. As a debugging tool, guarding can help
eliminate pointer management errors earlier in the
software development cycle. Even after product
release, guarding lessens the impact of addressing-
related errors by detecting errors at the time propagation
occurs rather than after the damaged data is used.
Because guarding detects a class of errors not well-
covered by data consistency checkers, it complements
existing fault tolerance techniques. For multi-process
DBMS architectures, guarding can prevent one DBMS
process’ errors from corrupting data structures used by
the other processes -- improving overall DBMS availa-
bility. In an extensible data manager, guarding is a
compromise between running application code in a
separate process and running it as a full fledged part of

the DBMS. Much of the protection of the separate
address space model is retained at a cost much closer to
the single-address space model.

Initial performance measurements indicate that
guarding the DBMS buffer pool has a relatively small
performance impact. For a debit/credit benchmark,
guarding caused roughly two to eleven percent degrada-
tion in performance, depending on update model and
workload. This cost is comparable to the costs of data
structure consistency checking normally included in
fault tolerant software. Guarding all of shared memory
was more expensive, five to eighty-seven percent over-
head for the same benchmarks, but even full shared
memory protection may be worthwhile in some environ-
ments. Changes to the DBMS required to support the
update models have been small. To support deferred
write, a few hundred lines were added to a roughly
50,000 line DBMS; the other models required less than
a hundred lines.

The paper is divided into five sections. The first
introduces the DBMS and operating system testbeds on
which we have implemented guarding. The second
details the update models and describes their implemen-
tations. The third section presents some performance
results and evaluates the reliability effects of guarding
based on previously published statistics about system
software errors. The fourth and fifth sections give pre-
vious work and conclusions.

2. System Assumptions

In this paper, we assume an extensible DBMS
architecture with multiple backend processes. Each
DBMS backend process has its own private address
space, but all of them share a single common memory
region. The shared region contains a lock table, buffer
pool, and some in-memory meta data structures used by
all of the backend processes. DBMS application pro-
grams run in separate address spaces and communicate
with the DBMS using messages. POSTGRES, the
DBMS used to evaluate guarding, has a process-per-
user architecture, but that does not have an impact on
guarding. Record-level locking is assumed.

The DBMS used in this study has an unconven-
tional storage manager [Stonebraker87], but the results
should still be applicable to more traditional DBMS
designs. The POSTGRES storage system has a ‘‘no
overwrite’’ policy in which data records are not updated
directly. An ‘‘update’’ marks the current version of the
record as invalid and inserts a new version of the record
on the same page as the old one. Out-of-date records are
removed (or archived) by a background garbage collec-
tor process. Guarding is implemented below the level
of the POSTGRES storage system and does not take
advantage of its no-overwrite property.
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POSTGRES is extensible, so code implementing
user-defined operators, access methods, and data types
can be added to the DBMS. Most extension code will
access shared data through a lower-level interface.
Locks are set through the POSTGRES lock manager
and disk data is accessed through the POSTGRES
buffer manager. Normally, the extension code will not
have to know about the existence of guarded pages.
Some extensions, such as user-defined access methods
which have their own page formats, would have to
know about and use guarding directly. For example,
B-tree access methods had to be modified to unprotect
pages before adding or deleting keys.

The Sprite operating system, which we modified
to support guarding, is a Unix-based distributed operat-
ing system being developed at Berkeley. We chose
Sprite as a testbed because the source code was avail-
able and well-documented. The guarding implementa-
tion assumes that the processor has a software-loaded
Translation Lookaside Buffer (TLB).

3. Models for Updating Protected Data

3.1. The Expose Page Update Model

In the expose page update model, a DBMS pro-
cess unguards a record before writing to it and reguards
the record after the write. Because write-protection is
enforced in hardware at page granularity, unguarding
one record also unguards all of the records on the same
page. The page granularity of guarding does not imply
page granularity for transaction locks, since transaction
locks are enforced by software.

Managing protected data in the buffer pool using
this model is straightforward. When the data manager
updates, inserts, or deletes a record on a buffer page, it
unprotects the page with a system call. While the page
is unprotected, the page header can be manipulated
directly (for updates and deletes) or the data in the
record can be changed.

After the DBMS has updated a record, it does not
necessarily have to reguard the record immediately. If
the record is not immediately reguarded, subsequent
updates avoid the cost of unguarding and reguarding the
data. Deferring the reguard operation reduces the pro-
tection offered to the data, however, and increases the
opportunity for the DBMS to ‘‘forget’’ to reguard the
page. Our implementation unguards one record at a
time, reguarding each record before updating the next.

In the Sprite shared memory implementation,
unguarding a page for one DBMS process unguards it
for all of the others as well. The guard and unguard sys-
tem calls change the software page table and modify the
TLB (Translation Lookaside Buffer) entry for the
affected page. A single software page table is used for

a shared memory segment, so, if a second process refers
to the unprotected page, it will be allowed access.
Sprite has also been modified to include a guarded_read
system call which allows the DBMS to read a page from
disk without leaving it unprotected during the entire I/O
operation.

Expose page is best for detecting pointer errors
affecting pages containing infrequently updated records.
‘‘Hot’’ pages containing frequently updated records will
be unprotected much of the time, so they will receive
less benefit from guarding than cold pages. The major
costs associated with expose page are an increased
number of system calls and the additional TLB opera-
tions required to change page protections. If guarding
were implemented on a processor with a virtually-
addressed cache, changing page protection status from
read-write to read-only would require a cache flush.
Virtually-addressed caches normally require cache flush
operations to change the protection bits for cached data.

3.2. The Deferred Write Update Model

The second model of DBMS data structure pro-
tection is designed to leave the record guarded until the
end of transaction. When a DBMS process needs to
update a record, it copies the record into writable
memory and updates the copy rather than update the
record in place. After the update is complete, an Install-
Data system call copies the new record value into the
protected page. InstallData takes as an argument an
array of (source address, destination address, length) tri-
ples, so several records can be installed with a single
system call.

InstallData combines an unguard operation, a
copy, and an guard operation into a single system call.
The operating system unprotects the page in the
processor’s TLB, copies in the updated record, and
reprotects the page in the TLB. If a record must be
installed in a page that is no longer in the buffer pool,
the DBMS reads the page back into memory before
installing the data. Unlike the expose page model,
InstallData never changes process page tables so unpro-
tecting the record for one DBMS process does not
unprotect it for the others. InstallData changes only the
TLB entry and changes it only for the duration of the
copy. Since Unix-based operating systems disallow
context switches during system calls, no other processes
can see the unprotected page.

As in the expose page model, deferred write
offers the DBMS programmer some latitude in deciding
when to complete the guarded update. The updated
record could be reinstalled immediately after the update.
It could also be installed after several updates, at the
end of transaction, or after several transactions. In our
implementation of the deferred write model, guarded
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records are installed at the end of transaction. Writable
records in POSTGRES are kept in unshared process
memory, so the data must be installed before transac-
tions running in other DBMS processes can see it.

Some modifications to the POSTGRES buffer
manager were required to support deferred write. If the
DBMS asks for a record on a page during a scan, the
buffer manager has to see if there is already a writable
copy of the record. If the record has not been copied,
the scan returns a pointer to the protected record. Oth-
erwise, the copy is returned. A hash table tells the
buffer manager whether or not there is currently an
unprotected copy of the record. If the DBMS decides to
update a record, it first tells the buffer manager to make
sure the record is writable. The request to make a
record writable is logically at the same place the DBMS
would upgrade a read lock to a write lock. Hence, the
existence of copies did not cause radical changes to the
DBMS software.

Deferred write is similiar in some respects to the
shadow paging technique used in System R [Lorie77].
Shadow paging is a no-overwrite transaction manage-
ment technique in which a new block on the disk is allo-
cated for every page modified by a transaction. When
the page is evicted from memory or forced to disk, it
goes to the new location. The update is committed by
remapping the new page into the original page’s posi-
tion in its home relation. Shadow paging was not used
in conjunction with write protection in System R and
did not provide the error detection benefits of deferred
write. Also, unlike shadow paging, deferred write uses
in-memory copies and does not affect the allocation of
the protected data on the disk.

An in-memory variation of shadow paging could
be used in conjunction with guarding to limit copying
costs. The deferred write implementation could copy
the entire page containing a target record instead of sim-
ply copying the record. When the update is complete,
the copy could be protected and remapped into the
(main memory) position occupied by the original ver-
sion of the page. In general, this technique will be cost
effective only if records are very large. When records
are small, making two small copies is faster than copy-
ing and remapping a full page.

The deferred write update model provides more
protection to guarded records than the expose page
model does. Because deferred write updates protected
records during a system call, the protected page is never
directly addressable to the DBMS process. In deferred
write, software errors can damage the writable copy of a
record, but other records on the same page are less at
risk. Installing the update to the wrong place on the
page is the only way to corrupt them.

Deferred write has an additional advantage over
both expose page and conventional DBMS transaction
management. When bad software corrupts data, often
the damage is not detected immediately. After an error
is detected, the DBMS never knows how much data has
been corrupted. The detected error could be part of a
larger cluster of undetected errors. With guarding and
deferred write, however, the DBMS knows that pro-
tected data cannot be corrupted until the InstallData
system call. If a transaction detects that it has corrupted
some of its data, it can simply throw away all unin-
stalled data. If the same transaction also caused
undetected damage, that damage will be thrown away
(assuming data is installed at the end of transaction).
The pages from which the data came (and other buffer
pool pages, for that matter) are guaranteed not to have
been damaged by this transaction because those pages
were never unprotected.

A conventional DBMS handles this situation by
aborting the transaction and hoping that the DBMS tran-
saction support removes the effects of undetected
errors. Aborting the transaction will remove the dam-
age only if the erring software accurately recorded its
updates in the log. Some errors, like those caused by
corrupted pointers, are not remedied by recovery proto-
cols. The most practical way for a conventional DBMS
to get the same guarantee as the deferred write update
model is to invalidate the entire buffer pool after detect-
ing an error.

3.3. The Expose Segment Update Model

The expose segment update model is similar to
the expose page model, however, protection is added to
or removed from all guarded pages at once. When the
DBMS makes an ExposeData system call, all protected
data becomes visible. A second system call, HideData
returns the protection to all exposed data.

Expose segment provides less protection than the
other two models since nothing is protected from the
routines which update critical data structures. The rea-
son for using the expose segment model is that it
simplifies the management of guarded data in some
modules. Using the expose segment model, a DBMS
programmer can unprotect data for a procedure and its
descendants in the call tree without knowing exactly
which protected pages will be written. For
POSTGRES, we found the expose segment model to be
convenient for small, fast, and trustworthy operations
that needed access to data on several pages. For exam-
ple, we use it in a shared memory hash table in the
implementation of record-level locking.

To further simplify programming in the expose
segment model, we use a pre-processor to place calls to
ExposeData and HideData in procedures. The DBMS
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programmer flags with a keyword any procedure which
is to update protected data. The pre-processor adds
ExposeData and HideData calls at the first line and
before all return statements in the targeted procedures.
The pre-processor eliminates a class of errors in which
data is never hidden again after an ExposeData call. It
also makes adding protection to new data structures
very easy.

To implement the expose segment update model
in Sprite, we modified the part of the operating system
that loads the processor’s TLB. Normally, the TLB
loader forces the DBMS process to take a protection
fault if it tries to write to protected data. After an
ExposeData system call, the Sprite TLB loader allows
writes to guarded data. When the data is hidden again,
the mappings for any guarded pages still in the TLB
must be returned to read-only status.

The implementation is optimized for the case in
which few pages are written while the guarded data is
exposed. After an ExposeData system call, the TLB
loader records the page number of the first few guarded
pages that are updated in a trace buffer. If only a few
pages are ever updated, the trace buffer allows fast
reprotection of these pages during HideData. If the
trace buffer overflows, the entire TLB must be flushed
to reprotect the exposed pages.

The expose segment model of guarded update is
similar to a conventional protected subsystem. Other
protected subsystems (the operating system kernel, for
example) require more complicated mechanisms since
they are expected to prevent malicious as well as
accidental damage.

4. Performance Impact of Guarded Data Struc-
tures

Because the DBMS and operating system have to
do extra work during updates of guarded records, guard-
ing will decrease DBMS performance for update-
intensive workloads. The extra costs involved in guard-
ing include the additional system calls and TLB opera-
tions required to change page protections. In the
deferred write update model, additional processing is
required to create and keep track of record copies.

In order to measure the performance impact of
guarding, we compared several different versions of
POSTGRES using a workload based on the TP1
debit/credit benchmark [Anon85]. In our version of this
benchmark, two thousand transactions were run against
a small database. Each transaction retrieves a tuple
from an account relation, updates the account relation
and two other smaller relations (branch and teller), and
appends a record to a fourth relation (history). Account
is 200 pages long and branch and teller are each one
page.

The benchmark database is small in order to
allow the DBMS to store the entire database in main
memory. We wanted to measure guarding under both a
CPU-bound and a disk-bound workload. Since the
POSTGRES storage system is optimized for battery-
backed main memory, it includes a ‘‘no disk write on
commit’’ option which we used for the CPU-bound
benchmark. In the CPU-bound case, POSTGRES never
writes updated pages to disk so the CPU is saturated.
When POSTGRES runs on a system with volatile
memory, it must write all modified data pages to disk at
transaction commit. In volatile-memory mode,
POSTGRES runs at about 25 percent CPU utilization.
The benchmarks were run single-user on a DECStation
3100 implementation of the Sprite operating system.

We compared six different versions of
POSTGRES. The normal version is a vanilla DBMS
with no guarding support. The unprotected copy ver-
sion used the deferred write update model but did not
protect the pages. Comparing the unprotected copy
POSTGRES to normal POSTGRES shows the overhead
in deferred write attributable to copy management, but
not to write protection. The next three POSTGRES ver-
sions each use a different one of the update models
described in the paper.

Table 1: Debit/Credit Performance for Guarding
In-Memory Database, CPU-Bound

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Protection

Update Model Overheadiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Normal POSTGRES 0%
Expose Page Guarding 7%
Expose Segment Guarding 10%
Unprotected Copy (no guarding) 6%
Deferred Write Guarding 11%
Full Protection 87%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

Table 2: Debit/Credit Performance for Guarding
25% CPU Utilization, Write-Through on Commit

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Protection

Update Model Overheadiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Normal POSTGRES 0%
Expose Page Guarding 2%
Expose Segment Guarding 3%
Unprotected Copy (no guarding) 2%
Deferred Write Guarding 3%
Full Protection 5%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
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The last POSTGRES version, full protection,
protects all of shared memory -- including the lock
table, some shared memory lookup tables, and the
buffer pool. The full protection version uses the
expose page update model to update data in the buffer
pool and expose segment to update all other data struc-
tures.

Tables one and two compare the protection over-
head for each of the six program versions. Each bench-
mark run of two thousand transactions was repeated five
times to get an average elapsed time. If the standard
deviation of the five elapsed times was greater than one
percent of the average, all five runs were repeated. The
tables present their results as the percent increase in the
average elapsed time caused by the protection mechan-
ism.

The tables show that the least expensive of the
three update models for the guarded buffer pool is
expose page. Expose segment is slightly more expen-
sive, probably because expose segment requires both a
system call and a TLB fault to access protected data
while expose page only requires a system call. In the
disk-bound case, the costs of the different models are
roughly the same. Since guarding does not affect disk
accesses, it has a large impact only when there is high
CPU utilization.

Deferred write has about the same cost as expose
segment. This cost is divided between the cost of
managing record copies and the cost of making
guarding-related system calls. Comparing the unpro-
tected copy DBMS to the deferred write DBMS shows
that much of the expense is related to copy manage-
ment. Deferred write makes only one system call per
transaction, so it would be expected to have less
guarding-related overhead than the other two tech-
niques. From profile data, we have seen that nearly all
of the copy management costs come from allocating,
freeing, and searching for record copies in the copy
hash table. Because records are small in the bench-
mark, physical copying does not affect performance.

In the CPU-bound case, the full protection DBMS
is significantly slower than the versions that only pro-
tected the buffer pool. The difference was more pro-
nounced on read-only transaction workload, since
buffer pool protection alone caused no measurable
decrease in performance. Full shared memory protec-
tion caused a 70% to a 116% increase in average
elapsed time, depending on the placement of the system
calls.
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5. Reliability Impact of Guarded Data Structures

In order for guarding to increase reliability, fail-
ing software must try to update protected data illegally.
If broken software always managed to unguard data
structures before corrupting them, guarding would not
be effective. Guarding would also have no impact if
software failures simply cause the program to halt or
produce incorrect results without ever overwriting any
data (e.g. deadlock).

We could measure the reliability impact of guard-
ing by running an extensive test suite against the pro-
tected DBMS, however, the results of such a test are
unlikely to reflect the impact of guarding in a commer-
cial system. Guarding has been implemented for a sin-
gle research DBMS. The types of errors experienced at
our site will not be the same as the commercial fault
tolerant systems experience in the field. Also, a meas-
urement study would have to compare one system with
guarding to another system without guarding in order to
get meaningful results. Comparison is important since,
to be cost effective, guarding must detect errors that
would not be detected by less expensive means.

A second evaluation alternative is to estimate the
effectiveness of guarding using existing software error
studies. Graph 1 summarizes some of the results from
six studies of software failures in operating systems.
The published studies in the table are from MVS
([Velardi84] and two from [Mourad87]), and DOS/VS
[Endres75]. These studies are difficult to compare since
they were taken at different phases of the development
cycle and had classifications which obscured informa-
tion we need to evaluate guarding. Each of the studies
classified errors in slightly different ways.

In graph 1, we have regrouped the categories
from each study into a few categories that could be
compared across all of the studies. The result is four
classes of errors: addressing errors, synchronization
errors, error handling errors, and miscellaneous.
Addressing errors are the ones of most interest for
evaluating guarding. Error handling errors come about
when the system failed after being unable to handle an
error in a lower level subsystem. The Endres study is
different from the others largely because it classified
many errors as ‘‘specification errors’’ without going
into detail about how they affected the execution of the
program.

The studies show that addressing errors make up
twenty to thirty percent of the recorded software errors.
In these studies, errors are assigned a primary cause
(based on available data and the interests of the research
team). The secondary effects of the error may involve
addressing failures as well, so thirty percent is not
necessarily an upper bound.

While this initial evidence is promising, more
work is required to show a strong relationship between
guarding and reliability. We are currently collecting
failure data from a commercial DBMS in order to better
characterize DBMS errors. Using this data, we intend
to conduct a more complete study using fault injection
techniques such as those used in [Chillarege89].

6. Using Guarding to Improve Data Availability

Guarding is a relatively inexpensive way of iso-
lating processes in a multi-process DBMS from one
another; this isolation can be used to improve the avai-
lability of data after one process fails. Software errors
from one DBMS process sometimes destroy data struc-
tures in shared memory, forcing all DBMS processes to
recover. By reducing the need for multi-process
recovery, guarding can improve recovery speed.
Because data is either unavailable or less available dur-
ing recovery, improving recovery speed improves data
availability.

To see the impact of multi-process recovery, con-
sider three levels of recovery:

(1) Single-Process Recovery: One DBMS process
aborts its current transaction and exits. To
recover, the process must restart and reinitialize
its in-memory data structures. The transaction in
progress on the failed process must be restarted
and the transaction’s work must be redone.

(2) Multi-Process Recovery: All DBMS processes
must reinitialize. In conventional write ahead
logging systems, some undo/redo log processing
is required. The DBMS buffer pool is discarded,
and must be reloaded from disk. Communications
with the client processes must be reestablished.

(3) Media Recovery: As above, but the contents of
disk must be restored from dump tape before
multi-process recovery begins.

Each level of recovery removes the effects of a different
class of errors. Media recovery affects errors which
corrupt the disk. Multi-process recovery is required
when shared memory is corrupted. Single-process
recovery can cleanup from errors affecting process local
memory. If all DBMS shared memory were guarded,
many of the errors that normally require multi-process
recovery could be repaired by faster single-process
recovery.

For some systems, using single process recovery
in place of multi-process recovery will increase the risk
posed by undetected errors. The additional risk comes
when a transaction manages to commit data with
undetected errors. If a second error occurs, multi-
process recovery reinitializes the buffer pool and dis-
cards the buffer damaged by the first error. If the
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second error is cleaned up with single process recovery,
the damaged buffer is not discarded.

In storage systems based on shadow paging and
in the POSTGRES storage system, even this situation
cannot occur. POSTGRES uses a no-overwrite update
policy instead of a conventional log [Stonebraker87].
As a consequence, any updated buffer page must be
written to stable main memory or to disk before the end
of transaction. Once written to stable store, the cor-
rupted buffer will be used in recovery whether the
buffer pool is discarded or not.

In a write ahead logging system, multi-process
recovery is more reliable than single process recovery
only when the system log is not corrupted. If both the
data and the log record are corrupted, multi-process
recovery will not remove the damage since data in the
log must be used for recovery. For example, if the
DBMS miscalculated a data value, the corrupted value
would be written into the log. Addressing errors can
obviously corrupt buffer pool data without generating
bad log records, but most of these errors are detected by
guarding.

In summary, guarding shared data structures
makes it possible to use single process recovery in place
of multi-process recovery. Using faster single-process
recovery will increase data availability during recovery.
In some storage systems, single process recovery
increases the risk of unrecoverable damage, but the
increased risk is small. The exact increase in risk
depends on how effective guarding is at preventing
errors and how long errors remain undetected after they
occur.

7. Previous Work

An alternative to protecting shared data structures
with guarding is to keep those data structures in one
address space and the clients of the data structures in
another. In order to make such an architecture practical,
a fast cross-address-space procedure call mechanism
like that of the Taos operating system [Bershad89] is
required. The Taos Lightweight Remote Procedure Call
(LRPC) is optimized for RPC-style communication in
which only a few parameters are passed between caller
and called routine. The Service Request Block (SRB)
mechanism in the MVS/XA [IBM] operating system is
similar to LRPC. An SRB is a high priority thread of
control which can be created in a remote address space.
Both LRPC and SRB use a fast path through the
scheduler and some shared memory to reduce overhead.

Guarding provides the same kinds of protection
against non-malicious damage as does an address space
boundary. However, access to read-only records is fas-
ter than would be possible in a separate address space
implementation. Since database workloads often

require the DBMS to scan through large amounts of
data before selecting some for update, faster read per-
formance is a distinct advantage.

Tandem’s process pair mechanism [Bartlett81]
also relies on multiple address spaces to prevent propa-
gation of software errors. The Tandem data manager
has a primary and ‘‘hot spare’’ process executing at the
same time on different machines. The primary executes
all transactions and sends checkpoint messages to the
spare. If the primary fails, the spare can reconstruct the
data manager’s state from the checkpoint messages.
While errors might propagate within the primary, they
are less likely to propagate to the spare.

While process pair prevents the same kinds of
errors as guarding does, it is much more expensive.
Keeping the spare up to date requires resources for
sending and processing checkpoint messages. Worse,
the implementation of the checkpoint protocol is non-
trivial. Modifications to the DBMS may affect the
checkpoint protocol, making them expensive to imple-
ment and test. Finally, the model does not help detect
errors. The primary and spare both have large, unpro-
tected buffer pools. An undetected pointer error can
damage a buffer without making the primary turn over
control to the spare. The corrupted buffer will eventu-
ally corrupt permanent data.

The 801 System [Chang88] uses page protection
bits to provide operating system support for DBMS
locking and logging, rather than using page protection
to increase fault tolerance. A data manager running on
the 801 does not set locks explicitly. Memory manage-
ment hardware detects a read or a write to an unlocked
buffer and the DBMS traps to the operating system.
The operating system then sets locks and implements
physical logging of 128 byte subpages. To support fine-
grain locking, the 801 memory management unit pro-
vides write-protection at subpage granularity. The same
hardware would support subpage granularity guarding.

Unlike a system using guarded data structures, the
801 treats any attempt to write to one of its buffers as
legitimate. By moving responsibility for locking from
the DBMS to the operating system, the 801 is losing
information available to the DBMS about which data is
updated erroneously. If a bad pointer causes a write to
an unlocked buffer, the 801 locks the buffer and logs it
normally. Under the same circumstances, a guarded
system would immediately halt the transaction.

Implementing protected operations such as lock-
ing in the operating system is one alternative to the
expose segment model of guarding. However, installing
the DBMS code in the operating system makes the
operating system vulnerable to errors in the installed
code. Guarding gives the DBMS implementor more
freedom to decide what code is reliable enough to have
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access to protected data. More debugging support is
available for user programs than for the operating sys-
tem, so implementing protected subsystems in the
DBMS is more practical than implementing them in the
OS.

The expose segment update model implementa-
tion provides some of the same protections as a pro-
tected subsystem mechanism without requiring any spe-
cial hardware or restricting the designer’s choice of pro-
gramming environment. Existing protected subsystem
mechanisms often rely on special memory management
hardware [Schroeder72], [Wulf74], or type-safe
languages [Lampson80]. The expose segment update
model can be implemented on any processor which uses
a software-loaded TLB. Of course, guarding is designed
to protect against accidental damage not malicious dam-
age. Existing protected subsystem mechanisms were
designed to protect against both.

We chose to implement the virtual memory sup-
port required for guarding by modifying the operating
system. It would also be possible to support guarding
using the Mach external pager [Young87]. Implement-
ing guarding directly in the operating system should
make guarding more efficient.

8. Conclusions and Future Work

We have modified the operating system and data
manager in order to limit software error propagation in
DBMS shared memory. Write protecting the data
manager’s buffer pool allows early hardware detection
of addressing-related software errors. Guarding reduces
the complexity of software failure by preventing errors
from propagating to protected data structures. Guarding
techniques can also improve recovery speed since limit-
ing potential error propagation decreases the amount of
work required at recovery time. While any DBMS
could use these techniques, they are especially impor-
tant to a extensible DBMS such as POSTGRES. With a
guarded system, one person using (or developing) new
access methods or data types has smaller impact on the
availability and reliability achieved by his or her peers.

In general, the performance impact of guarding is
comparable to the impact of other software techniques
for detecting software errors, such data structure
verifiers or array bounds checks. Guarding can be
implemented efficiently by taking advantage of proces-
sors with software-loaded TLBs. For read-only work-
loads, guarding provides the DBMS with additional pro-
tection at no extra cost. For update-intensive work-
loads, experiments have shown that the additional CPU
demand caused by guarding is only a few percent when
small records are updated. In the future, we will use
page remapping techniques as a method for reducing
copy cost for large records.

In deciding whether or not to guard data struc-
tures, system designers face a tradeoff between poten-
tial reliability and availability improvement and a small
but measurable performance loss. For some systems, no
reliability gain will be worth any loss in performance.
Others may be willing to accept the small performance
loss in order to achieve any reliability improvement.
Still other systems may want the option of switching
from guarded to normal operations at different points in
the system lifetime or for different customers. An
important second area of future work is the develop-
ment of techniques for quantifying the reliability impact
of guarding. These techniques will help system
designers or administrators make an informed decision
about whether or not to use guarding.

Over time, trends in system cost will tilt the
performance/protection tradeoff in the favor of guard-
ing. Falling memory prices are increasing the sizes of
disk caches like the DBMS buffer pool. Some data in
the cache will remain unused for long periods of time.
It is essential that bad writes into this data be caught at
the time of the error rather than the first time the data is
used. Meanwhile, as processors become faster, the
additional processing demands caused by guarding will
become less of a concern.
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